Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Microbiol Spectr ; : e0525622, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20238742

ABSTRACT

The 50% plaque reduction neutralization assay (PRNT50) has been previously used to assess the neutralization capacity of donor plasma against wild-type and variant of concern (VOC) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging data suggest that plasma with an anti-SARS-CoV-2 level of ≥2 × 104 binding antibody units/mL (BAU/mL) protects against SARS-CoV-2 Omicron BA.1 infection. Specimens were collected using a cross-sectional random sampling approach. For PRNT50 studies, 63 previously analyzed specimens by PRNT50 versus SARS-CoV-2 wild-type, Alpha, Beta, Gamma, and Delta were analyzed by PRNT50 versus Omicron BA.1. The 63 specimens plus 4,390 specimens (randomly sampled regardless of serological evidence of infection) were also tested using the Abbott SARS-CoV-2 IgG II Quant assay (anti-spike [S]; Abbott, Chicago, IL, USA; Abbott Quant assay). In the vaccinated group, the percentages of specimens with any measurable PRNT50 versus wild-type or VOC were wild type (21/25 [84%]), Alpha (19/25 [76%]), Beta (18/25 [72%]), Gamma (13/25 [52%]), Delta (19/25 [76%]), and Omicron BA.1 (9/25 [36%]). In the unvaccinated group, the percentages of specimens with any measurable PRNT50 versus wild type or VOC were wild-type SARS-CoV-2 (16/39 [41%]), Alpha (16/39 [41%]), Beta (10/39 [26%]), Gamma (9/39 [23%]), Delta (16/39 [41%]), and Omicron BA.1 (0/39) (Fisher's exact tests, vaccinated versus unvaccinated for each variant, P < 0.05). None of the 4,453 specimens tested by the Abbott Quant assay had a binding capacity of ≥2 × 104 BAU/mL. Vaccinated donors were more likely than unvaccinated donors to neutralize Omicron when assessed by a PRNT50 assay. IMPORTANCE SARS-CoV-2 Omicron emergence occurred in Canada during the period from November 2021 to January 2022. This study assessed the ability of donor plasma collected earlier (January to March 2021) to generate any neutralizing capacity against Omicron BA.1 SARS-CoV-2. Vaccinated individuals, regardless of infection status, were more likely to neutralize Omicron BA.1 than unvaccinated individuals. This study then used a semiquantitative binding antibody assay to screen a larger number of specimens (4,453) for individual specimens that might have high-titer neutralizing capacity against Omicron BA.1. None of the 4,453 specimens tested by the semiquantitative SARS-CoV-2 assay had a binding capacity suggestive of a high-titer neutralizing capacity against Omicron BA.1. These data do not imply that Canadians lacked immunity to Omicron BA.1 during the study period. Immunity to SARS-CoV-2 is complex, and there is still no wide consensus on correlation of protection to SARS-CoV-2.

2.
J Hosp Infect ; 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2231419

ABSTRACT

BACKGROUND: Solid organ and haematopoietic stem cell transplant recipients are at increased vulnerability to SARS-CoV-2 due to immunosuppression and may pose a continued transmission risk especially within hospital settings. Detailed case reports including symptoms, viral load and infectiousness, defined by the presence of replication-competent viruses in culture, provide an opportunity to examine the relationship between clinical course, burden and contagiousness, and provide guidance on release from isolation. OBJECTIVES: We performed a systematic review to investigate the relationship in transplant recipients between serial SARS-CoV-2 RT-PCR cycle threshold (Ct) value or cycle of quantification value (Cq), or other measures of viral burden and the likelihood and duration of the presence of infectious virus based on viral culture including the influence of age, sex, underlying pathologies, degree of immunosuppression, and/or vaccination on this relationship. METHODS: We searched LitCovid, medRxiv, Google Scholar and WHO Covid-19 databases, from 1 November 2019 until 26 October 2022. We included studies reporting relevant data for transplantees with SARS-CoV-2 infection: results from serial RT-PCR testing and viral culture data from the same respiratory samples. We assessed methodological quality using five criteria, and synthesised the data narratively and graphically. RESULTS: We included 13 case reports and case series reporting on 41 transplantees including 22 renal, 5 cardiac, 1 bone marrow, 2 liver, 1 bilateral lung, and 10 blood stem cell transplants. We observed a relationship between proxies of viral burden and likelihood of shedding replication-competent SARS-CoV-2. Three individuals shed replication-competent viruses for over 100 days after infection onset. Lack of standardisation of testing and reporting platforms precludes establishing a definitive viral burden cut-off. However, the majority of transplantees stopped shedding replication-competent viruses when the RT-PCR cycle threshold was above 30 despite differences across platforms. CONCLUSIONS: Viral burden is a reasonable proxy for infectivity when considered within the context of the clinical status of each patient. Standardised study design and reporting are essential to standardise guidance based on an increasing evidence base.

4.
Am J Physiol Heart Circ Physiol ; 323(6): H1262-H1269, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2117986

ABSTRACT

Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Cricetinae , Infant , SARS-CoV-2 , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Inflammation
5.
Microbiol Spectr ; 10(5): e0281122, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2038255

ABSTRACT

There is evidence that COVID-19 convalescent plasma may improve outcomes of patients with impaired immune systems; however, more clinical trials are required. Although we have previously used a 50% plaque reduction/neutralization titer (PRNT50) assay to qualify convalescent plasma for clinical trials and virus-like particle (VLP) assays to validate PRNT50 methodologies, these approaches are time-consuming and expensive. Here, we characterized the ability of the Abbott severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG II Quant assay to identify high- and low-titer plasma for wild-type and variant (Alpha, Beta, Gamma, and Delta) SARS-CoV-2 characterized by both VLP assays and PRNT50. Plasma specimens previously tested in wild-type, Alpha, Beta, Gamma, and Delta VLP neutralization assays were selected based on availability. Selected specimens were evaluated by the Abbott SARS-CoV-2 IgG II Quant assay [Abbott anti-Spike (S); Abbott, Chicago, IL], and values in units per milliliter were converted to binding antibody units (BAU) per milliliter. Sixty-three specimens were available for analysis. Abbott SARS-CoV-2 IgG II Quant assay values in BAU per milliliter were significantly different between high- and low-titer specimens for wild-type (Mann-Whitney U = 42, P < 0.0001), Alpha (Mann-Whitney U = 38, P < 0.0001), Beta (Mann-Whitney U = 29, P < 0.0001), Gamma (Mann-Whitney U = 0, P < 0.0001), and Delta (Mann-Whitney U = 42, P < 0.0001). A conservative approach using the highest 95% confidence interval (CI) values from wild-type and variant of concern (VOC) SARS-CoV-2 experiments would identify a potential Abbott SARS-CoV-2 IgG II Quant assay cutoff of ≥7.1 × 103 BAU/mL. IMPORTANCE The United States Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the use of COVID-19 convalescent plasma (CCP) to treat hospitalized patients with COVID-19 in August 2020. However, by 4 February 2021, the FDA had revised the convalescent plasma EUA. This revision limited the authorization for high-titer COVID-19 convalescent plasma and restricted patient groups to hospitalized patients with COVID-19 early in their disease course or hospitalized patients with impaired humoral immunity. Traditionally our group utilized 50% plaque reduction/neutralization titer (PRNT50) assays to qualify CCP in Canada. Since that time, the Abbott SARS-CoV-2 IgG II Quant assay (Abbott, Chicago IL) was developed for the qualitative and quantitative determination of IgG against the SARS-CoV-2. Here, we characterized the ability of the Abbott SARS-CoV-2 IgG II Quant assay to identify high- and low-titer plasma for wild-type and variant (Alpha, Beta, Gamma, and Delta) SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
7.
Sci Rep ; 12(1): 5418, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1768847

ABSTRACT

To explore the potential modes of Severe Acute Respiratory Coronavirus-2 (SARS-CoV-2) transmission, we collected 535 diverse clinical and environmental samples from 75 infected hospitalized and community patients. Infectious SARS-CoV-2 with quantitative burdens varying from 5 plaque-forming units/mL (PFU/mL) up to 1.0 × 106 PFU/mL was detected in 151/459 (33%) of the specimens assayed and up to 1.3 × 106 PFU/mL on fomites with confirmation by plaque morphology, PCR, immunohistochemistry, and/or sequencing. Infectious virus in clinical and associated environmental samples correlated with time since symptom onset with no detection after 7-8 days in immunocompetent hosts and with N-gene based Ct values ≤ 25 significantly predictive of yielding plaques in culture. SARS-CoV-2 isolated from patient respiratory tract samples caused illness in a hamster model with a minimum infectious dose of ≤ 14 PFU. Together, our findings offer compelling evidence that large respiratory droplet and contact (direct and indirect i.e., fomites) are important modes of SARS-CoV-2 transmission.


Subject(s)
COVID-19 , Humans , Polymerase Chain Reaction , Respiratory System , SARS-CoV-2/genetics
8.
Sci Rep ; 12(1): 3484, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730308

ABSTRACT

Determining the viral load and infectivity of SARS-CoV-2 in macroscopic respiratory droplets, bioaerosols, and other bodily fluids and secretions is important for identifying transmission modes, assessing risks and informing public health guidelines. Here we show that viral load of SARS-CoV-2 Ribonucleic Acid (RNA) in participants' naso-pharyngeal (NP) swabs positively correlated with RNA viral load they emitted in both droplets >10 [Formula: see text] and bioaerosols <10 [Formula: see text] directly captured during the combined expiratory activities of breathing, speaking and coughing using a standardized protocol, although the NP swabs had [Formula: see text] 10[Formula: see text] more RNA on average. By identifying highly-infectious individuals (maximum of 18,000 PFU/mL in NP), we retrieved higher numbers of SARS-CoV-2 RNA gene copies in bioaerosol samples (maximum of 4.8[Formula: see text] gene copies/mL and minimum cycle threshold of 26.2) relative to other studies. However, all attempts to identify infectious virus in size-segregated droplets and bioaerosols were negative by plaque assay (0 of 58). This outcome is partly attributed to the insufficient amount of viral material in each sample (as indicated by SARS-CoV-2 gene copies) or may indicate no infectious virus was present in such samples, although other possible factors are identified.


Subject(s)
Aerosols , Cough , Respiration , SARS-CoV-2/isolation & purification , Speech , Viral Load , Humans
9.
Antimicrob Resist Infect Control ; 11(1): 28, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1673926

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA is completed through reverse transcriptase-PCR (RT-PCR) from either oropharyngeal or nasopharyngeal swabs, critically important for diagnostics but also from an infection control lens. Recent studies have suggested that COVID-19 patients can demonstrate prolonged viral shedding with immunosuppression as a key risk factor. CASE PRESENTATION: We present a case of an immunocompromised patient with SARS-CoV-2 infection demonstrating prolonged infectious viral shedding for 189 days with virus cultivability and clinical relapse with an identical strain based on whole genome sequencing, requiring a multi-modal therapeutic approach. We correlated clinical parameters, PCR cycle thresholds and viral culture until eventual resolution. CONCLUSIONS: We successfully demonstrate resolution of viral shedding, administration of COVID-19 vaccination and maintenance of viral clearance. This case highlights implications in the immunosuppressed patient towards infection prevention and control that should consider those with prolonged viral shedding and may require ancillary testing to fully elucidate viral activity. Furthermore, this case raises several stimulating questions around complex COVID-19 patients around the role of steroids, effect of antiviral therapies in absence of B-cells, role for vaccination and the requirement of a multi-modal approach to eventually have successful clearance of the virus.


Subject(s)
COVID-19/pathology , Rituximab/pharmacology , SARS-CoV-2/drug effects , Virus Shedding/drug effects , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Immunocompromised Host , Male , Middle Aged , Nasopharynx , Tomography, X-Ray Computed , Treatment Outcome , Viral Load , COVID-19 Drug Treatment
10.
Transfusion ; 62(2): 418-428, 2022 02.
Article in English | MEDLINE | ID: covidwho-1571123

ABSTRACT

BACKGROUND: Randomized clinical trial data show that early plasma transfusion may save lives among trauma patients. Supplying plasma in remote environments is logistically challenging. Freeze-dried plasma (FDP) offers a possible solution. STUDY DESIGN AND METHODS: A Terumo BCT plasma freeze-drying system was evaluated. We compared pooled frozen plasma (FP) units with derived Terumo BCT FDP (TFDP) units and pooled COVID-19 convalescent apheresis fresh-frozen plasma (CC-AFFP) with derived CC-TFDP units. Parameters measured were: coagulation factors (F) II; V; VII; VIII; IX; XI; XIII; fibrinogen; Proteins C (PC) and S (PS); antithrombin (AT); α2 -antiplasmin (α2 AP); ADAMTS13; von Willebrand Factor (vWF); thrombin-antithrombin (TAT); D-dimer; activated complement factors 3 (C3a) and 5 (C5a); pH; osmolality; prothrombin time (PT); and activated partial thromboplastin time (aPTT). Antibodies to SARS-CoV-2 in CC-AFFP and CC-TFDP units were compared by plaque reduction assays and viral protein immunoassays. RESULTS: Most parameters were unchanged in TFDP versus FP or differed ≤15%. Mean aPTT, PT, C3a, and pH were elevated 5.9%, 6.9%, 64%, and 0.28 units, respectively, versus FP. CC-TFDP showed no loss of SARS-CoV-2 neutralization titer versus CC-AFFP and no mean signal loss in most pools by viral protein immunoassays. CONCLUSION: Changes in protein activities or clotting times arising from freeze-drying were <15%. Although C3a levels in TFDP were elevated, they were less than literature values for transfusable plasma. SARS-CoV-2-neutralizing antibody titers and viral protein binding levels were largely unaffected by freeze-drying. In vitro characteristics of TFDP or CC-TFDP were comparable to their originating plasma, making future clinical studies appropriate.


Subject(s)
Blood Component Removal , Blood Component Transfusion , COVID-19 , Freeze Drying , Antithrombins , COVID-19/therapy , Canada , Hemostatics , Humans , Immunization, Passive , Plasma , SARS-CoV-2 , Viral Proteins , COVID-19 Serotherapy
11.
Clin Microbiol Infect ; 28(2): 178-189, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1487662

ABSTRACT

BACKGROUND: The role of SARS-Cov-2-infected persons who develop symptoms after testing (presymptomatics) or not at all (asymptomatics) in the pandemic spread is unknown. OBJECTIVES: To determine infectiousness and probable contribution of asymptomatic persons (at the time of testing) to pandemic SARS-CoV-2 spread. DATA SOURCES: LitCovid, medRxiv, Google Scholar, and WHO Covid-19 databases (to 31 March 2021) and references in included studies. STUDY ELIGIBILITY CRITERIA: Studies with a proven or hypothesized transmission chain based either on serial PCR cycle threshold readings and/or viral culture and/or gene sequencing, with adequate follow-up. PARTICIPANTS: People exposed to SARS-CoV-2 within 2-14 days to index asymptomatic (at time of observation) infected individuals. INTERVENTIONS: Reliability of symptom and signs was assessed within contemporary knowledge; transmission likelihood was assessed using adapted causality criteria. METHODS: Systematic review. We contacted all included studies' corresponding authors requesting further details. RESULTS: We included 18 studies from a diverse setting with substantial methodological variation (this field lacks standardized methodology). At initial testing, prevalence of asymptomatic cases was 12.5-100%. Of these, 6-100% were later determined to be presymptomatic, this proportion varying according to setting, methods of case ascertainment and population. Nursing/care home facilities reported high rates of presymptomatic: 50-100% (n = 3 studies). Fourteen studies were classified as high risk of, and four studies as at moderate risk of symptom ascertainment bias. High-risk studies may be less likely to distinguish between presymptomatic and asymptomatic cases. Six asymptomatic studies and four presymptomatic studies reported culturing infectious virus; data were too sparse to determine infectiousness duration. Three studies provided evidence of possible and three of probable/likely asymptomatic transmission; five studies provided possible and two probable/likely presymptomatic SARS-CoV-2 transmission. CONCLUSION: High-quality studies provide probable evidence of SARS-CoV-2 transmission from presymptomatic and asymptomatic individuals, with highly variable estimated transmission rates.


Subject(s)
COVID-19 , SARS-CoV-2 , Bias , Humans , Pandemics , Reproducibility of Results
12.
Transfusion ; 62(1): 37-43, 2022 01.
Article in English | MEDLINE | ID: covidwho-1470483

ABSTRACT

BACKGROUND: This pilot study assesses the ability of plasma collected from Canadian blood donors in the first wave of the SARS-CoV-2 pandemic to neutralize later SARS-CoV-2 variants of concern (VOCs). STUDY DESIGN AND METHODS: A repeated cross-sectional design was used, and a random cross-sectional sample of all available Canadian Blood Services retention samples (n = 1500/month) was drawn monthly for April and May of 2020. Qualitative IgG analysis was performed on aliquots of specimens using anti-spike, anti-receptor binding domain, and anti-nucleocapsid protein enzyme-linked immunosorbent assays as well as the Abbott Architect SARS CoV-2 IgG assay (Abbott Laboratories) against the anti-nucleocapsid protein. Selected plasma specimens were then assessed for neutralization against VOCs using pseudotyped lentivirus inhibition assays as well as plaque reduction neutralization test 50% (PRNT50 ). RESULTS: Six specimens with a high neutralizing titer against wild-type SARS-CoV-2 and three specimens with a low neutralizing titer against wild-type SARS-CoV-2 were chosen for further analysis against VOCs. Four of six high neutralizing titer specimens had a reduced neutralizing capacity against beta VOCs by both neutralization methods. Three of six high neutralizing titer specimens had reduced neutralization capacity against gamma VOCs. CONCLUSIONS: This preliminary data can be used as a justification for limiting the use of first wave plasma products in upcoming clinical trials but cannot be used to speculate on general trends in the immunity of Canadian blood donors to SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Blood Donors , COVID-19 , SARS-CoV-2 , COVID-19/therapy , Canada , Cross-Sectional Studies , Humans , Immunization, Passive , Immunoglobulin G/immunology , Neutralization Tests , Pilot Projects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
13.
J Travel Med ; 28(7)2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1393299

ABSTRACT

RATIONALE FOR THE REVIEW: Air travel may be associated with viruses spread via infected passengers and potentially through in-flight transmission. Given the novelty of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, transmission associated with air travel is based on transmission dynamics of other respiratory viruses. Our objective was to provide a rapid summary and evaluation of relevant data on SARS-CoV-2 transmission aboard aircraft, report policy implications and to highlight research gaps requiring urgent attention. METHODS: We searched four electronic databases (1 February 2020-27 January 2021) and included studies on SARS-CoV-2 transmission aboard aircraft. We assessed study quality based on five criteria and reported important findings. KEY FINDINGS: We included 18 studies on in-flight SARS-CoV-2 transmission (130 unique flights) and 2 studies on wastewater from aircraft. The quality of evidence from most published studies was low. Two wastewater studies reported PCR-positive samples with high cycle threshold values (33-39). Index case definition was heterogeneous across studies. The proportion of contacts traced ranged from 0.68 to 100%. Authors traced 2800/19 729 passengers, 140/180 crew members and 8/8 medical staff. Altogether, 273 index cases were reported, with 64 secondary cases. Three studies, each investigating one flight, reported no secondary cases. Secondary attack rate among studies following up >80% of passengers and crew (including data on 10 flights) varied between 0 and 8.2%. The studies reported on the possibility of SARS-CoV-2 transmission from asymptomatic, pre-symptomatic and symptomatic individuals. Two studies performed viral cultures with 10 positive results. Genomic sequencing and phylogenetic analysis were performed in individuals from four flights. CONCLUSION: Current evidence suggests SARS-CoV-2 can be transmitted during aircraft travel, but published data do not permit any conclusive assessment of likelihood and extent. The variation in design and methodology restricts the comparison of findings across studies. Standardized guidelines for conducting and reporting future studies of transmission on aircraft should be developed.


Subject(s)
Air Travel , COVID-19 , Aircraft , Humans , Phylogeny , SARS-CoV-2 , Travel
14.
J Virol ; 95(13): e0026621, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1263905

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway. Type I IFNs and IFN-stimulated genes (ISGs) were poorly induced during SARS-CoV-2 infection, and once infection was established, cells were highly resistant to ectopic induction of IFNs and ISGs. Levels of two key IFN signaling pathway components, Tyk2 and STAT2, were significantly lower in SARS-CoV-2-infected cells. Expression of nonstructural protein 1 (NSP1) or nucleocapsid in the absence of other viral proteins was sufficient to block IFN induction, but only NSP1 was able to inhibit IFN signaling. Mapping studies suggest that NSP1 prevents IFN induction in part by blocking IRF3 phosphorylation. In addition, NSP1-induced depletion of Tyk2 and STAT2 dampened ISG induction. Together, our data provide new insights into how SARS-CoV-2 successfully evades the IFN system to establish infection. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19, a serious disease that can have a myriad of symptoms from loss of taste and smell to pneumonia and hypercoagulation. The rapid spread of SARS-CoV-2 can be attributed in part to asymptomatic transmission, where infected individuals shed large amounts of virus before the onset of disease. This is likely due to the ability of SARS-CoV-2 to effectively suppress the innate immune system, including the IFN response. Indeed, we show that the IFN response is efficiently blocked during SARS-CoV-2 infection, a process that is mediated in large part by nonstructural protein 1 and nucleocapsid. Our study provides new insights on how SARS-CoV-2 evades the IFN response to successfully establish infection. These findings should be considered for the development and administration of therapeutics against SARS-CoV-2.


Subject(s)
Interferon Type I/antagonists & inhibitors , SARS-CoV-2/metabolism , Signal Transduction , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/metabolism , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Phosphoproteins/metabolism , SARS-CoV-2/pathogenicity , STAT2 Transcription Factor/metabolism , TYK2 Kinase/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL